
Agent Oriented AmI Engineering

Raian Ali1 Sameh Abdel-Naby1 Antonio Maña2 Antonio Muñoz2 and Paolo
Giorgini1

1 University of Trento - DIT, 38100 Trento, Italy.
2 University of Malaga - E.T.S.I.Informatica, 29071 Malaga, Spain.
{raian.ali, sameh, paolo.giorgini}@dit.unitn.it, amg@lcc.uma.es

Abstract. Ambient Intelligence (AmI) refers to an environment that is
sensitive, responsive, interconnected, contextualized, transparent, intelli-
gent, and acting on behalf of humans. This environment is coupled with
ubiquity of computing devices that enables it to transparently sense con-
text changes, to react accordingly, and even to take the initiative towards
fulfilling human needs. Security, privacy, and trust challenges are ampli-
fied with AmI computing model and need to be carefully engineered.
From software engineering perspective, the shift towards AmI can be
seen abstractly similar to the shift from object paradigm towards agent
one. Objects provide functionality to be exploited, while agents possess
functionality and know how and when to use and offer it autonomously.
Agent paradigm is suitable for implementing AmI considering AmI as
an open complex system. Moreover, we argue that agent paradigm is
equally useful for engineering all aspects of such systems from the early
phases of software development life cycle.

1 Introduction

Notebooks, PDAs, and third generation cellular phones are now computing de-
vices equipped with wireless connectivity features allowing them to access dif-
ferent data networks anytime anywhere. The evolution in size and capabilities
of those computing devices, along with those in wireless communications have
effectively enabled people to be always online. This increased mobility in its raw
form is not more than going beyond the classical desktop into a portable one.
People are still requested to deal with different computers, and to adapt them-
selves to them. The next step would be to relieve people of even being aware of
computer existence [1]. Computing is going to be seeded in the environment as
an integral part of it, instead of being a set of external entities, used explicitly
by trained humans.

Many challenges are related to enhancing the uselfulness of the current ad-
vances in computing devices and communication ubiquity. One of them is that
current software development methods were created mainly for what we can call
request/response software. There is a lack of sufficient models, development ex-
perience and even of imagination about how the new software systems can exploit
the new technology advances [2]. The expectations of new software is that it will
support features like location and context awareness, personalization, adaptabil-
ity, organic growth, mobility, and some other features that impose the need of



more comprehensive software engineering methods and new innovative modeling
languages [3].

AmI focuses on making our environment sensitive to our needs and respon-
sive smartly to people and environment context changes [4]. Objects around us
in office, home, club, and other daily life locations, are expected to play their
roles autonomously on behalf of us humans. AmI implies the ability of environ-
ment to learn and adapt by time to people characters and profiles, so ambient
intelligence is always growing in organic style together with humans. This am-
bient is intertwined with invisible computing, it aims to give people what they
need transparently without they explicitly ask or even know. AmI will relieve
humans of being busy of at least the most repetitive actions they might take
during their daily life.

It is well known that agent paradigm is a promising paradigm for imple-
menting complex open systems like e-commerce, air-traffic, enterprise resource
planning, and so on [5]. The characteristics of these domains fit well to what
agent and multi agent systems can do. Software Agent is a software element
that realizes the concept of agency, and acts on behalf of people or other agents.
Agent paradigm was firstly dealt with inside AI community. Recently, and after
the long hard experience of artificial intelligence, researchers could find other
areas to exploit fruitfully agent paradigm. Agent paradigm has received a spe-
cial interest in software engineering community as a paradigm shift from the
object oriented one [6][7]. The shift is based on seeing the world as a society of
distributed intelligence units, called agents, that have characters and can decide.
This way of viewing the world differentiates itself from the object oriented one
that conceptually view the world as a collection of objects. Objects provide en-
capsulation of data together with the procedures related, they are used by main
well defined central control, and do not have their own autonomy.

One of the challenges that face building an AmI is the lack of models and
software engineering practice that help analysing system requirements, designing
the system to be built, verifying and testing the implemented one. Until now the
research is in its first stages, and the need for suitable development methodolo-
gies has been already recognized. For engineering AmI, we might need different
software engineering methods from those that are suitable for developing re-
quest/response systems, where system behavior is well known and determined
strictly, and where human-computer interaction is desktop driven one. AmI shifts
this way of interaction into contextual, direct, and invisible human environment
interaction, hiding the computers in the background of this environment. The
disappearance of computers and coupling environment appliances with comput-
ing devices will arise like any new technology a variety of challenges. The system
domain is no longer some sort of business or organization has a clear business
process and tasks. Users are no longer those clerks or students in a library sys-
tem; instead users are now those normal people in houses, offices, campus and
other daily life environment. The request/response scenario is replaced here by
continuous sensitive, reactive, intelligence surrounding computing.

We believe that agent paradigm is not only useful for implementing AmI sys-



tems, but rather we see it appropriate in all phases of the software development
life cycle. As in object-oriented and component-oriented worlds, AmI ecosystems
are composed of independent pieces of software with well defined interfaces, but
the main difference is that in AmI each of these pieces has a different owner
and has its own goals. This is another fundamental aspect that reinforces the
appropriateness of agent oriented approaches for AmI. We are aware that cur-
rent agent oriented software engineering methodologies, which are still inside the
academic areas, have to be checked again for engineering AmI. If we succeed to
analyze and design such systems by the use of agent driven software engineering,
we might come up with final agent based system that is robust, scalable, and
intelligent enough to satisfy AmI needs.

The remainder of this paper is structured as follows; next section shows AmI
as multidisciplinary complex system. Section 3 outlines the agent paradigm.
Section 4 introduces the agent oriented software engineering research. Section 5
discusses the possibility of exploiting agent paradigm for engineering AmI, for
this purpose in subsection 5.1 we address the the potential agent paradigm has
with regards to AmI systems engineering, and in the last but not least subsection
we focus on how agent paradigm can be exploited to face security challenges in
AmI ecosystems. In Section 5 we conclude.

2 The Multidisciplinary AmI

Approaching an ambient that is perceptive, intelligent, and active will involve
multiple disciplines to contribute creating the final scene. Several researches
are being done in AmI area, with some differences in emphasis and direction.
Multiple terminologies are being used as this research is in its first steps. In the
rest of this section, we will investigate the vision of AmI, and try to capture a
variety of disciplines that need to meet in order to achieve this vision.

Philips vision of AmI [8] is based on shifting computers into the background,
and supporting the ubiquitous computing with more awareness capabilities. The
vision is based on three elements, 1) the ubiquity, which refers to those com-
puting devices intertwined with human environment anywhere, and functioning
anytime, 2) the transparency of such computing systems, so they are hidden in
the background, 3) and the intelligence; they should act instead of being only
responsive to human commands. Such system relieves people of thinking about
many repetitive needs and takes the initiative of doing what should be done in
the correct moment and approach.

MIT vision of AmI [9] similarly views it as an unobtrusive integration of
computing with our daily life. Such computing provides humans with relevant
information and performs necessary tasks when needed on their behalf. Such
ambient will be continuously careful, doing the suitable tasks in a transparent,
invisible and intelligent way. Traditionally, computers work as an apparent mes-
senger or mediator between humans and environment. In AmI, this relation is
replaced by direct non-disruptive relation between humans and the environment
they are located within. In short, AmI computing is no longer visible.



The vision of invisible disappearing computers was addressed by Weiser [10].
The vision expected ubiquitous existence of computing and communication ca-
pabilities anytime and anywhere. AmI focuses on assisting the intelligence and
awareness of this ubiquity of interconnected computing devices, so computing
starts to take the initiative on behalf of human. AmI is meant to orchestrate
the variety of environment objects in a way they might interoperate to do more
complex tasks as well. Ubiquity of computing is the basis an AmI is built on.
However, the terms ubiquitous computing, pervasive computing, ambient com-
puting, ambient intelligence are now used interchangeably with some differences
in the context and emphasis.

AmI is now about integrating computing devices with the environment we all
live in; it is then sitting on the opposite side of virtual reality which brings world
inside computers [10]. This makes computers invisible and relieves people mind
of even knowing about their existence. To arrive this point, computers has to
adapt to user needs and character by contrast of the traditional scene in which
user is supposed to adapt to computer systems. This is now of great importance
because people spend increasingly more time to interact with computing systems.
To people, it is becoming a source of stress being obligated to remember when
and what and how to do tasks. With AmI, artefacts encapsulate implicitly the
role of computer mediation. Artefacts will look as they have their own character,
autonomy, and intelligence, they are more agents than normal objects.

Consequently, AmI is by nature a multidisciplinary paradigm [11]. Distributed
intelligence is needed to cover this intelligent ambient, it is now composed of dis-
tributed intelligence units that we might call Agents. New hardware design is
needed for embedding computing devices invisibly inside the surrounding phys-
ical environment. AmI system is situated within a highly dynamic environment
that is open for changes, these changes need to be sensed and interpreted in a
way that is timely fashion and relevant to what might serve user needs. The
input now is coming implicitly, and continuously from a variety of sensors, cam-
eras, and other kind of peripherals. Such environmental information need to be
modelled and reasoned about in order to take the correct contextual decision.

Computer disappearance was considered by Weiser as one of the most pro-
found technology features [10]. Apart from the physical disappearance of com-
puting devices, there is that mental disappearance toward peace of mind in
human life. To achieve such peace of mind, the interaction between human and
computer is updated to direct interaction between human and environment [1].
New novel ideas of interaction design have to be invented to move from the ex-
plicit interaction to an implicit one [12]. The implicit interaction includes the
notion of implicit input known more commonly as Context [13].

Context awareness [14][15] is an essential feature an AmI system has to tackle
in order to act in adaptive and intelligent way. This context, that might be
spatio-temporal, environmental, personal, social, and so on, needs to be modeled,
captured, analysed and reasoned about [2]. Reasoning about context needs a
model and formalization acts as a knowledge base, and enables inferring more
high level knowledge. For example blood pressure and body temperature besides



user current activity and location might reveal user current mood, this mood can
be provided implicitly as an input, so AmI might take some actions as a response.

AmI is expected also to have the ability of learning and keeping track of
human historical behaviour. AmI embodies a high degree of personalization to
human profiles and life styles. Software personalization is a standalone research
now, but we might hardly consider AmI as a useful system if it behaves in the
same way with different kind of people and characters. The social mobility of
humans is another important issue an AmI application needs to consider. People
normally play more than one social role, they should be accordingly supplied by
tailored services and information considering their social context [16].

AmI arises many social issues that need to be studied and analysed before
AmI can get acceptance in practice. The ubiquity of computing might relieve
people mind in one hand and might have negative impacts as well. People will
feel that they lost control, and might not trust technology. People have already
lost some privacy providing that cellular phones enable other party of at least
knowing their location, and the same for using credit cards. Instead of com-
manding computing, computing in AmI is supposed to control several aspects
of people everyday life. An essential principle in this regard is that human do
not feel that they lost control, and to enable them configuring their needs in a
simple way, may be through some privacy patterns. However, we see many inter-
esting practical domains that can benefit from AmI scenarios, such as the health
care domain, in particular those specialized of caring old people, and supporting
persons with dementia problems, where AmI might play the role of caregiver.

3 Agent Paradigm

Agent-based computing is currently becoming an important research area. This
increased interest is motivated by the need for software can act on behalf of its
user, software that is able to realize the concept of agency. Giving a definition for
agent is not straightforward; there is no consensus about the main characteristics
an agent should have to deserve this name. A well accepted definition of software
agent is found in [6]:

”An agent is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that

environment in order to meet its design objectives.”

An agent is supposed to have its own control over its state and behavior, to
percept the environment around and to affect it in turn. Being in an environ-
ment and sensing it implies the necessity that agent can react to environmental
context changes. Moreover, agent is supposed to activate goals without external
prompt and to tailor suitable plans to achieve them. The key characteristics an
agent must have that are highly agreed upon include: autonomy, proactiveity,
reactivity, situatedness, directedness, and social ability.

Being autonomous, an agent behaves independently according to the state it
encapsulates. For example, an agent, by contrast to an object, can decide the way



of how to respond to the incoming messages from other agents. Agents interact
with each other without losing control if they do not allow that. Proactivity
means that agent is able to take the initiative without external order. Agents
have goals and act in order to achieve them. This is more complicated than
reacting in timely fashion to direct environment stimulus. Situatedness means
the ability of agent to settle in an environment that might contain other agents,
to perceive it, and to respond to changes that happen in it. An agent might make
changes and effect this environment in turn. Directedness means that agent has a
goal, this goal represents the reason of the actions an agent has to take. An agent
does not exist in vacuum; instead it lives in a society of other collaborative or
possibly competitive groups of agents. Agents have the social ability to interact
with other agents. This interaction might be motivated by collaborative problem
solving.

A long discussion can be found in the literature about what formulates an
agent and what differentiates it from object. We are here not concerned about
such discussion, rather we believe that using agent as a kind of abstraction
might enable us of viewing the world as an organization of autonomous entities,
directed by goals, able to sense the environment changes and can learn by time.
The use of agent paradigm as kind of abstraction might better help of analyzing
and designing complex open systems, and presents more natural way to start
with, and hopefully this will lead to more robust and flexible software systems
in correspondence.

An agent is supposed to live in a society of agents; multi-agent system (MAS)
is known as a system composed of several agents collectively capable of reaching
goals that are difficult to achieve by an individual agent or monolithic system.
The relation can be alternatively competitive one, like for example multiple
agents responsible for advertising products in an open market on behalf of dif-
ferent producers, or a society of agents in an e-auction. Again, defining MAS
is not that straightforward. MAS might help us decomposing the problem into
components that are able to interact and deal with unpredictable situations that
can happen in complex systems like AmI.

A MAS represents a natural way of decentralization, where there are au-
tonomous agents working as peers, or in teams, with their own behavior and
control. Each of these agents looks to the world from its own perspectives and has
its own goals and intentions. Such MAS is expected to work well with open com-
plex systems, and to scale well by time. It is one promising computing paradigm
for implementing many application domains such as e-commerce, enterprise re-
source planning, and traffic control, and so on [5]. We consider AmI as a system
that fits by its nature to agent and multi-agent system paradigm as we are going
to discuss later.

4 Agent Oriented Software Engineering (AOSE)

Software engineering is different from other engineering disciplines in its depend-
ability on engineer skills of analysing the problem, designing a suitable solution,



and coming up with the final system [17]. Although software engineering is qual-
itative in nature, a serious research is being done to find more and more scientific
methods, models, and criteria that assist developing the intended software. Prob-
lems are everywhere in software development process, engineering a software is
an engineering for abstraction. For example, understanding precisely what a soft-
ware is supposed to do and transforming this knowledge into abstract models
readable by both of engineers and stakeholders is far of being easy as it seems.

Many large industrial projects failed because the final software was not the
one needed or expected. The models used to describe software requirements
and design need to be compact and expressive enough to replace usefully the
natural language. The models need therefore to be precise enough to not lose
the real concepts they are supposed to represent. The models might be formal
or transformable into formal ones, so reasoning can be done over them with
the purpose of discovering any anomalies, incompleteness, or inconsistencies.
Software engineering methodology is concerned not only about inventing and
using modelling languages that can express what the system has to fulfil, and
the software design, but rather it has to provide a process model for creating
such models in turn.

Software agent that persistently observes the environment, interprets it, acts,
and might communicate with other agents is a promising computing paradigm
for implementing open complex systems. AOSE methodologies tend to analyse
and design such kinds of complex systems in order to arrive finally to an agent-
based implementation. There are several research groups working in developing
their own AOSE methodologies [7]. The orientation towards agent does not mean
that these methodologies use agency concepts and agent mentalistic notions
along with all phases of developing software, rather the goal is to analyze and
design in a way that leads to multi agent system. Only Tropos [18], as an AOSE
methodology, uses the notions of agent and the related mentalistic notions from
the early analysis down to the actual implementation.

As the use of computing is becoming an essential part of individuals’ daily
life together with business and organizations, and as we increasingly need to
combine between different computing ends and parties, the need for software that
is dynamic, flexible, adaptable, situated is more critical. The need for software
evolution is becoming faster than software development process itself. Solving
these challenges is based to a large extent on the way such software has to
be engineered. Agent oriented software engineering is trying to arrive methods
that enable developing a software can resist against evolving requirements, a
software that is flexible enough to adapt and change fluently according to the
new environments and requirements.

Fortunately, agent oriented software engineering, by contrast to object ori-
ented software engineering and structured analysis and design, is not restricted
or deeply influenced by some existing programming paradigm [19][20]. Agent
oriented software engineering research is now taking the initiative towards pro-
gramming languages and infrastructures that serve the concepts suitable for
software development instead of using those of existing programming languages



in reverse unnatural way. Being limited to programming languages has enforced
those previous software engineering practices to focus on the solution domain,
since the concepts used are not those describing naturally requirements and
problem domain. Agent oriented software engineering is growing together with
agent oriented programming and agent infrastructure, this might fill the gap
between problem and solution domains. Hopefully such consistency will make
software development process faster, and lead to software can be easily evolved
and maintained, and can adapt to different environments and requirements.

5 Exploiting agent paradigm for engineering AmI

Agent paradigm fits well for implementing AmI scenarios due to the coinci-
dence between agent characteristics and AmI needs. Agent paradigm as a kind
of abstraction is also capable of giving a good contribution with regards to AmI
systems development, including analysis and design phases, besides the security
issues. In this section we will state our initial view of the agent oriented AmI
engineering and securing.

5.1 Agent-oriented AmI development

As we explained previously, AmI shows a degree of complexity and multiple
inter-related disciplines that require using special engineering paradigm. This
need is coming from the new nature of such systems, where behavior is not
known in details, or adequately controllable. AmI is distinguished by its dynam-
icity, openness, and complex inter-relations amongst environment components.
Compared with object oriented software engineering practice, agent paradigm
offers a higher level of abstraction suitable for engineering complex systems [21].
Agent paradigm enables engineering software at the knowledge level; at this level
we talk of mental states, of beliefs instead of machine states, of plans and actions
instead of programs, of communication, negotiation and social ability instead of
direct interaction and I/O functionalities, of goals, desires, and so on [22].

Tackling the complexity of developing complex software can be done through
some techniques such as 1) Decomposing the problem into smaller sub-problems
that can be managed more easily. 2) Using abstract models to represent system
focusing on some concepts and relations, and omitting others unrelated. Such
models should be compact and expressive in order to usefully summarize and
even formalize what can be alternatively expressed by the natural languages. 3)
Defining and managing the inter-relationships between problem solving compo-
nents as they were an organization of some hierarchy [23].

As shown in [17], agent paradigm is not only useful as software construct
but rather it can be used as a new way for analyzing and designing complex
systems. Using the decomposition, abstraction and organization techniques to
tackle the complexity of such systems can be done following agent paradigm from
the early phases. Decomposing complex systems into related subsystems, each
with its own thread of control, and own objectives to be achieved autonomously



can be seen as a society of interacting agents. Agent paradigm provides a sort
of abstraction to model problem domain in terms that are too constituent with
solution domain. Subsystems are viewed as autonomous agents, agent social abil-
ity implies the interrelation at high level amongst those autonomous subsystems.
This interaction might model cooperation, coordination, or negotiation amongst
agents. The evolution of inter-relations between components of complex systems
and the different aggregation these components can be classified at different lev-
els of abstraction match closely to agent and multi-agent system paradigm. As
for the dynamic organization structure, agent paradigm has the expressivity to
represent these concepts due to its explicit structure and flexible mechanisms.
A methodology called Gaia [24] was developed to reflect such ideas providing a
methodological way for engineering some kinds of complex systems.

Another attempt for using agent paradigm as conceptualization construct
is based on BDI agent architecture, the world is viewed as a society of actors
each has its own autonomy, and might depend on each others for task to be
performed, goal to be achieved or resource to be provided [21]. Agent beliefs are
the world model at the conceptual level, agent desires are translated into goals
to be achieved, while the intention an agent might commit is considered as a
plan. The multiple plans an agent might follow to achieve the same goal give
some degree of flexibility for dealing with different contexts. Goals are analyzed
through means-end analysis to conclude the actual actions by which goals are
achieved. These actions are the actual requirements of the intended final software
[25]. Tropos is another methodology was developed on the basis of these ideas, it
uses agent mentalistic notion along all the phases of software development [18].

For engineering AmI, like for example smart campus, we need to decompose
it into autonomous subsystems, and to abstract using knowledge level concep-
tualization rather than the fine grained one used by OO which is useful for
predicted behavior and relatively static systems. With AmI we are not talk-
ing about an organization with one well defined behavior, business process, and
straight control. Here the ambient is always changing and in an unpredictable
way sometimes, so we need high degree of adaptability to cope with AmI going
to serve everyday life scenarios with a lot of alternatives. Considering AmI as
complex open system, we believe that agent paradigm and agent mentalisitc no-
tions can contribute well for analyzing, and designing AmI scenarios rather than
only implementing them.

5.2 Securing AmI ecosystems

We have shown that Agent-systems can bring important benefits especially in
application scenarios where highly distributed, autonomous, intelligente, self or-
ganizing and robust systems are required. Furthermore, the high levels of au-
tonomy and self-organization of agent systems provide excellent support for the
development of systems in which dependability is essential. Both Ubiquitous
Computing and Ambient Intelligence scenarios belong to this category. How-
ever, despite the attention given to this field by research community the agent
technology has failed to gain a wide acceptance and has been applied only in a



few specific real world scenarios. Security issues play an important role in the
development of multi-agent systems and are considered to be one of the main
issues to solve before agent technology is ready to be widely used outside the
research community. However, we will show in this section that solutions are
available for most of these problems. Furthermore, very promising technologies
are currently under development (in some cases in a quite advanced phase) for
the remaining problems. Consequently, our view is that the main reason why
agent-oriented approaches have not gained wider acceptance is the lack of ap-
propriate application scenarios. Precisely, AmI ecosystems are perfect scenarios
for the application of agent approaches. With regards to security, agents present
the most appropriate solution because they facilitate concealing disparate secu-
rity requirements from different points in order to achieve each parts’ goals in a
collaborative setting. Of course, as mentioned above, we need to solve the most
important security issues for general multi-agent systems.

Some of the general software protection mechanisms can be applied to the
protection of agents. However, the specific characteristics of agents mandate the
use of tailored solutions. First, agents are most frequently executed in potentially
malicious pieces of software. Therefore, we can not simplify the problem as is
done in other scenarios by assuming that some elements of the system can be
trusted. Then, the security of an agent system can be defined in terms of many
different properties such as confidentiality, non repudiation, etc. but it always
depends on ensuring the correct execution of the agent on agent servers (a.k.a.
agencies) within the context of the global environments provided by the servers
[26].

Some protection mechanisms are oriented to the protection of the host sys-
tem against malicious agents. More relevant approach is Sandboxing, a sandbox
is a container that limits, or reduces, the level of access its agents have and
provide mechanisms to control the interaction among them. Another technique,
called proof-carrying code, [27]. For this purpose, every code fragment includes
a detailed proof that can be used to determine wether the security policy of the
host is satisfied by the agent. Therefore, hosts just need to verify that the proof
is correct (i.e. it corresponds to the code) and that it is compatible with the
local security policy.

Other mechanisms are oriented towards protecting agents against malicious
agencies. Sanctuaries [29] are execution environments where a mobile agent can
be securely executed. Most of these proposals are built with the assumption that
the platform where the sanctuary is implemented is secure. Unfortunately, for
agent-based systems this assumption is not applicable.

Several techniques can be applied to an agent in order to verify self-integrity
in order to avoid that the code or the data of the agent is inadvertently ma-
nipulated. Anti-tamper techniques, such as encryption, checksumming, anti-
debugging. anti-emulation and some others [30] [31] share the same goal, but
they are also oriented towards the prevention of the analysis of the function that
the agent implements.

Additionally, some protection schemes are based on self-modifying code and



code obfuscation [32]. In agent systems, these techniques exploit the reduced
execution time of the agent in each platform. Software watermarking techniques
[33] are also interesting. In this case the purpose of protection is not to avoid the
analysis or modification but to enable the detection of such modification. The
relation between all these techniques is strong. In fact, it has been demonstrated
that neither perfect obfuscation nor perfect watermark exists [34].

In summary, all these techniques provide short-term protection; therefore, in
general they are not applicable for our purposes. However, in some scenarios,
they can represent a suitable solution, especially, when combined with other
approaches. Theoretic approaches to the problem have demonstrated that self-
protection of the software is unfeasible [35].

In some scenarios, the protection required is limited to some parts of the
software (code or data). In this way, the function performed by the software, or
the data processed, must be hidden from the host where the software is running.
Some of these techniques require an external offline processing step in order
to obtain the desired results. Among these schemes, function hiding techniques
allow the evaluation of encrypted functions [36]. This technique protects the
data processed and the function performed. For this reason it is an appropriate
technique for protecting agents. However, it can only be applied to the protection
of polynomial functions.

The case of online collaboration schemes is also interesting. In these schemes,
part of the functionality of the software is executed in one or more external
computers. The security of this approach depends on the impossibility for each
part to identify the function performed by the others. This approach is very
appropriate for distributed computing architectures such as agent-based systems
or grid computing, but has the important disadvantage of the impossibility of
its application to off-line environments

Finally there are techniques that create a two-way protection. Some of these
are hardware-based, such as the Trusted Computing Platform. With the recent
appearance of ubiquitous computing, the need for a secure platform has become
more evident. Therefore, this approach adds a trusted component to the com-
puting platform, usually built-in hardware used to create a foundation of trust
for software processes [37]. Other techniques are software-based, for instance
Protected Computing [38] approach. Protected Computing approach is based
on the partitioning of the software elements into two or more dependent parts,
then a part of this code will be remotely executed in a different agent.

6 Conclusions

AmI implies a shift from appliances that provide some functionality and can be
utilized by external entity, towards appliances that have their own autonomy
and know how to behave on behalf of humans without explicit request.

Abstractly speaking, this shift can be seen similar to the shift from object
oriented towards agent oriented software paradigm. When we described AmI as
a multidisciplinary paradigm, we discovered the similarity between AmI needs



and Agent paradigm primitives. In AmI, each ambient appliance will behave
like an agent that has character and can decide. Each appliance needs to be
autonomous, reacting to environment changes, and taking the initiative towards
fulfilling human needs in the correct moment and way. Appliances also need
to settle down within an open environment of other appliances and need to
communicate with them, so it needs some kind social ability.

Moreover, we consider AmI, that is intended to serve unpredictable everyday
life scenarios and includes a spread of interacting appliances, as an open complex
system that needs to be engineered using more advanced techniques than those
tailored for well defined systems. We believe that agent paradigm is promising
for developing AmI systems during all the development life cycle phases and not
only for implementing them. Agent oriented software engineering methodologies
have a good potential with respect to AmI; so the next step could be adapting
some existing methodologies, or creating a new one, in order to engineer AmI
at all phases of development life cycle from requirement gathering until the final
implementation.

References

1. N. Streitz and P. Nixon. The Disappearing Computer. Communications of The
ACM, March 2005/Vil. 48, No.3.

2. Krogstie, J., et al., Research Areas and Challenges for Mobile Information Systems.
International Journal of Mobile Communication, 2004. 2(3).

3. Krogstie, J. Requirements Engineering for Mobile Information Systems. In Proceed-
ings of the Seventh International Workshop on Requirements Engineering: Founda-
tions for Software Quality (REFSQ’01). 2001. Interlaken, Switzerland.

4. Eu Project Report. ISTAG Scenarios for Ambient Intelligence 2010.
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf

5. M. Wooldridge and N. R. Jeanings, Intelligent agents: Theory and practice, Knowl.
Eng. Rev., vol. 10, no. 2, 1995.

6. M. Wooldridge. Agent-based Software Engineering. In IEE Proceedings on Software
Engineering, 144(1), pages 26–37, February 1997.

7. Paolo Giorgini and B. Henderson-Sellers (Eds.) Agent-Oriented Methodologies, Idea
Group Inc., 2005

8. Philips Research. Ambient Intelligence Research in ExperienceLab.
http://www.research.philips.com/technologies/syst softw/ami/

9. MIT Ambient Intelligence Research Group. http://ambient.media.mit.edu/
10. Mark Weiser. The Computer for the Twenty-First Century. Scientific American,

pp. 94-10, September 1991.
11. Remagnino, P. and Foresti, G.L. Ambient Intelligence: A New Multidisciplinary

Paradigm. IEEE Transactions on Systems, Man and Cybernetics, Part A, Volume
35, Issue 1, Jan. 2005 Page(s):1 - 6.

12. A. Schmidt. Implicit Human Computer Interaction Through Context. Personal
Technologies Volume 4(2&3), June 2000. pp191-199.

13. A. Schmidt, K.A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven, W. Van de
Velde. Advanced Interaction in Context. The International Symposium on Handheld
and Ubiquitous Computing (HUC99), Karlsruhe, Germany, 1999 & Lecture notes
in computer science; Vol 1707, ISBN 3-540-66550-1; Springer, 1999, pp 89-101.



14. Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of Con-
text and Context-Awareness. In the Proceedings of the CHI 2000 Workshop on The
What, Who, Where, When, and How of Context-Awareness, The Hague, Nether-
lands, April 1-6, 2000.

15. Jolle Coutaz , James L. Crowley , Simon Dobson , David Garlan, Context is key,
Communications of the ACM, v.48 n.3, March 2005

16. K. Lyytinen , Y. Yoo The Next Wave of Nomadic Computing: A Research Agenda
for Information Systems Research. Sprouts: Working Papers on Information Envi-
ronments, Systems and Organizations. Vol. 1, Issue 1, Article 1 - 2001.

17. N.R. Jennings. On Agent-Oriented Software Engineering. Artificial Intelligence 117
(2) 277-296 (2000).

18. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini. TROPOS:
An Agent-Oriented Software Development Methodology. Journal of Autonomous
Agents and Multi-Agent Systems. Kluwer Academic Publishers Volume 8, Issue 3,
Pages 203 - 236, May 2004.

19. J. Mylopoulos, L. Chung, and E. Yu. From Object-Oriented to Goal-Oriented
Requirements Analysis. Communications of the ACM, 42(1):3137, Jan. 1999.

20. J. Mylopoulos, Information modeling in the time of the revolution, Information
Systems, v.23 n.3-4, p.127-155, May 1, 1998

21. E. Yu. Agent Orientation as a Modelling Paradigm. Wirtschaftsinformatik. 43(2)
April 2001. pp. 123-132.

22. A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, J. Mylopoulos. A Knowledge
Level Software Engineering Methodology for Agent Oriented Programming. In the
Proceedings of the Fifth International Conference on Autonomous Agents, Montreal,
Canada - May 29 - June 01, 2001.

23. G.Booch ”Object-Oriented analysis and design with applications” Addison Wesley
(1994)

24. M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. In Journal of Autonomous Agents and Multi-Agent
Systems. 3(3):285-312. 2000.

25. A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-Directed Requirements Ac-
quisition. Science of Computer Programming Vol. 20, North Holland, 1993, pp. 3-50.

26. S. Berkovits, J. Guttman, V. Swarup. Authentication for Mobile Agents. Mobile
Agents and Security. Springer-Verlag Publishers Volume 1419, 1998, pp 114-136.

27. G. Necula G. Proof-Carrying Code. Proceedings of 24th Annual Symposium on
Principles of Programming Languages. 1997.

28. A. Gunter Carl, P. Homeier, S. Nettles. Infrastructure for Proof-Referencing Code.
Proceedings of the Workshop on Foundations of Secure Mobile Code. March 1997.

29. Yee, Bennet S. A Sanctuary for Mobile Agents. Secure Internet Programming.
1999.

30. I. Schaumller-Bichl1, E. Piller. A Method of Software Protection Based on the Use
of Smart Cards and Cryptographic Techniques. Proceedings of Eurocrypt. Springer-
Verlag. LNCS 0209, pp. 446-454. 1984.

31. J.P. Stern, G. Hachez, F. Koeune, J.J. Quisquater. Robust Object Watermarking:
Application to Code. Proceedings of Info Hiding, Springer-Verlag. LNCS 1768, pp.
368-378. 1999.

32. C.Collberg, C. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation -
Tools for Software Protection. University of Auckland Technical Report 170. 2000.

33. P. Wayner. Dissapearing Cryptography. Information Hiding, Stenography and Wa-
termarking. Morgan Kauffman. 2002.



34. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K.
Yang. On the (Im)possibility of Obfuscating Programs. Proceedings of CRYPTO.
Springer-Verlag. LNCS 2139. pp. 1-18. 2001.

35. O. Goldreich. Towards a theory of software protection. Proceedings of the 19th
Ann. ACM Symposium on Theory of Computing, pp. 182-194. 1987.

36. T. Sander, C.F. Tschudin. On Software Protection via Function Hiding. Proceed-
ings of Information Hiding. Springer-Verlag. LNCS 1525. pp 111-123. 1998.

37. S. Pearson, B. Balacheff, L. Chen, D. Plaquin, G. Proudler. Trusted Computer
Platforms. Prentice Hall. 2003.

38. A. Maña, A. Muñoz Mutual Protection for Multiagent Systems. Proceedings of the
Third International 3rd International Workshop on Safety and Security in Multia-
gent Systems. 2006.

This article was processed using the LATEX macro package with LLNCS style


